34,231 research outputs found

    Finding the Origin of the Pioneer Anomaly

    Full text link
    Analysis of radio-metric tracking data from the Pioneer 10/11 spacecraft at distances between 20 - 70 astronomical units (AU) from the Sun has consistently indicated the presence of an anomalous, small, constant Doppler frequency drift. The drift can be interpreted as being due to a constant acceleration of a_P= (8.74 \pm 1.33) x 10^{-8} cm/s^2 directed towards the Sun. Although it is suspected that there is a systematic origin to the effect, none has been found. As a result, the nature of this anomaly has become of growing interest. Here we present a concept for a deep-space experiment that will reveal the origin of the discovered anomaly and also will characterize its properties to an accuracy of at least two orders of magnitude below the anomaly's size. The proposed mission will not only provide a significant accuracy improvement in the search for small anomalous accelerations, it will also determine if the anomaly is due to some internal systematic or has an external origin. A number of critical requirements and design considerations for the mission are outlined and addressed. If only already existing technologies were used, the mission could be flown as early as 2010.Comment: 21 SS pages, 4+1 figures. final changes for publicatio

    Nodeless superconductivity in the noncentrosymmetric Mo3_3Rh2_2N superconductor: a μ\muSR study

    Full text link
    The noncentrosymmetric superconductor Mo3_3Rh2_2N, with Tc=4.6T_c = 4.6 K, adopts a β\beta-Mn-type structure (space group PP41_132), similar to that of Mo3_3Al2_2C. Its bulk superconductivity was characterized by magnetization and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation and relaxation (μ\muSR). The low-temperature superfluid density, measured via transverse-field (TF)-μ\muSR, evidences a fully-gapped superconducting state with Δ0=1.73kBTc\Delta_0 = 1.73 k_\mathrm{B}T_c, very close to 1.76 kBTck_\mathrm{B}T_c - the BCS gap value for the weak coupling case, and a magnetic penetration depth λ0=586\lambda_0 = 586 nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined by zero-field (ZF)-μ\muSR measurements, hints at a preserved time-reversal symmetry in the superconducting state. Both TF-and ZF-μ\muSR results evidence a spin-singlet pairing in Mo3_3Rh2_2N.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid Communication in Phys. Rev.

    Coexistence of localized and itinerant electrons in BaFe2X3 (X = S and Se) revealed by photoemission spectroscopy

    Full text link
    We report a photoemission study at room temperature on BaFe2X3 (X = S and Se) and CsFe2Se3 in which two-leg ladders are formed by the Fe sites. The Fe 2p core-level peaks of BaFe2X3 are broad and exhibit two components, indicating that itinerant and localized Fe 3d sites coexist similar to KxFe2-ySe2. The Fe 2p core-level peak of CsFe2Se3 is rather sharp and is accompanied by a charge-transfer satellite. The insulating ground state of CsFe2Se3 can be viewed as a Fe2+ Mott insulator in spite of the formal valence of +2.5. The itinerant versus localized behaviors can be associated with the stability of chalcogen p holes in the two-leg ladder structure.Comment: 5 pages, 5 figures, Accepted in publication for Physical Review

    Neutron-Capture Elements in the Double-Enhanced Star HE 1305-0007: a New s- and r-Process Paradigm

    Full text link
    The star HE 1305-0007 is a metal-poor double-enhanced star with metallicity [Fe/H] =2.0=-2.0, which is just at the upper limit of the metallicity for the observed double-enhanced stars. Using a parametric model, we find that almost all s-elements were made in a single neutron exposure. This star should be a member of a post-common-envelope binary. After the s-process material has experienced only one neutron exposure in the nucleosynthesis region and is dredged-up to its envelope, the AGB evolution is terminated by the onset of common-envelope evolution. Based on the high radial-velocity of HE 1305-0007, we speculate that the star could be a runaway star from a binary system, in which the AIC event has occurred and produced the r-process elements.Comment: 4 pages, 3 figures, paper accepted for publication in Chinese Physics letter

    Factors affecting metal mobilisation during oxidation of sulphidic, sandy wetland substrates

    Get PDF
    Most metals accumulate as sulphides under anoxic conditions in wetland substrates, reducing their bioavailability due to the solubility of metal sulphides. However, upon oxidation of these sulphides when the substrate is occasionally oxidised, metals can be released from the solid phase to the pore water or overlaying surface water. This release can be affected by the presence of carbonates, organic matter and clay. We compared changes of Cd, Cu and Zn mobility (CaCl2 extraction) during oxidation of a carbonate-rich and a carbonate-poor sulphidic, sandy wetland substrate. In addition, we studied how clay with low and high cation sorption capacity (bentonite and kaolinite, respectively) and organic matter (peat) can counteract Cd, Cu and Zn release during oxidation of both carbonate-rich and carbonate-poor sulphidic sediments. CaCl2-extractability of Cu, a measure for its availability, is low in both carbonate-poor and carbonate-rich substrates, whereas its variability is high. The availability of Cd and Zn is much higher and increases when peat is supplied to carbonate-poor substrates. A strong reduction of Cd and Zn extractability is observed when clay is added to carbonate-poor substrates. This reduction depends on the clay type. Most observations could be explained taking into account pH differences between treatments, with kaolinite resulting in a lower pH in comparison to bentonite. These pH differences affect the presence and characteristics of dissolved organic carbon and the metal speciation, which in turns affects the interaction of metals with the solid soil phase. In carbonate-rich substrates, Cd and Zn availability is lower and the effects of peat and clay amendment are less clear. The latter can also be attributed to the high pH and lack of pH differences between treatments

    Application of Hamamatsu MPPC to T2K Neutrino Detectors

    Full text link
    A special type of Hamamatsu MPPC, with a sensitive area of 1.3x1.3mm^2 containing 667 pixels with 50x50um^2 each, has been developed for the near neutrino detector in the T2K long baseline neutrino experiment. About 60 000 MPPCs will be used in total to read out the plastic scintillator detectors with wavelength shifting fibers. We report on the basic performance of MPPCs produced for T2K.Comment: Contribution to the proceedings of NDIP 2008, Aix-les-Bains, France, June 15-20, 200

    Hydration temperature rise and thermal stresses induced in segment-on-pier of prestressed concrete box girder bridge

    Get PDF
    The heat generation from chemical reactions of hardening concrete causes temperature rise and thermal expansion. When the concrete temperature eventually cools down to the ambient, thermal contraction would result. If the tendency of volume change and associated thermal movement are restrained, thermal stresses would be induced and this would lead to early thermal cracking. The issue of thermal cracking should be duly considered in mass concrete construction. Regarding concrete bridge construction, the piles, pile caps, bridge piers, crosshead girders, and bridge diaphragms are typical examples of mass concrete elements. A bridge project in real-life is selected for study in this paper, with focus on the segment-on-pier accommodating the diaphragm of prestressed concrete girder deck. The segment was instrumented to measure its actual early age temperature rise on site. Finite element simulation and analysis was conducted to evaluate the time variations of temperature distributions and thermal stresses induced in the bridge segment. The risk of thermal cracking can be indicated by the measurement and analysis results. The techniques employed in this study are useful for planning of temperature control measures in similar projects
    corecore